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ABSTRACT 
This one-year project aims to improve predictive models for regional liquefaction hazard 

mapping. In particular, the project team developed and implemented a multiscale random field 
model-based framework for regional liquefaction mapping. In this framework, a classical 
liquefaction model is adopted to assess liquefaction potentials at the site-specific scale using 
cone penetration test data. The statistical distribution and spatial variability of relevant soil 
parameters and liquefaction hazard measures are characterized and explicitly accounted for at 
this scale. A unique feature of this work is that the spatial correlation is extended to multiple 
length scales to characterize cross-scale soil spatial variability. Moreover, existing surficial 
geologic data are used to constrain the large-scale spatial variations of soil parameters. Both 
geotechnical data and geologic data are integrated using a conditional sequential simulation 
algorithm. The framework is then applied to map liquefaction potential index across the Alameda 
county site of California. The results are validated with existing knowledge and liquefaction 
observations, and show improved predictions when both geotechnical and geological data are 
appropriately accounted for in the liquefaction hazard maps. 

To verify random field-based mapping approaches, a detailed three-dimension synthetic 
digital soil field is artificially generated along with benchmark liquefaction hazard fields. The 
digital field is used as a basis for assessing and verifying various random field-based models for 
liquefaction mapping. Different virtual field investigation plans are designed to assess the 
dependency of data inference and model performance upon the level of availability of sampling 
data. Model performances are assessed using three information theory-based measures. Results 
show that when sampling data is sufficient, all random field-based models examined capture 
fairly well the benchmark liquefaction potentials in the studied field. As the size of the sampling 
data decreases, the accuracy of predictions decreases for all models but to different degrees; the 
three-dimensional random field model gives the best result in this scenario. All random field-
based models examined in this paper yield a slightly more conservative prediction of liquefaction 
potential over the studied field.  

Ongoing work has extended the developed multiscale random field-based framework to 
account for uncertainties in future seismic events by integrating a recently developed model to 
calculate the joint distribution of peak ground acceleration and the moment magnitude of an 
earthquake from the latest USGS National Seismic Hazard Maps. 

 

 
 

  



1 INTRODUCTION 
There have been continuous efforts, many led and funded by the U.S. Geological Survey 

(USGS), to provide increasingly accurate liquefaction hazard maps for earthquake-prone regions 
in the United States. Conventional approaches for regional liquefaction evaluation and mapping 
often rely on surficial geology and the resulting liquefaction susceptibility or potential maps 
predict constant liquefaction hazard within a surficial geologic unit (Youd and Perkins, 1978; 
Knudsen et al., 2000; Witter et al., 2006). Subsequently, geotechnical data-based site-specific 
liquefaction models are integrated with geostatistical models to map liquefaction hazards (Holzer 
et al., 2006; Liu and Chen 2006; Baise et al. 2006; Lenz and Baise 2007; Heidari and Andrus 
2010; Vivek and Raychowdhury 2014; Chen et al. 2016a&b). A more recent work in this area is 
to develop liquefaction models for global-scale applications (Zhu et al. 2015 & 2017). One major 
challenge with the incorporation of geotechnical and geology data, however, is that the surficial 
geology data and the geotechnical borehole data represent spatial variability of soil properties at 
two distinct scales, i.e., the regional scale (~km) and the site-specific scale (~m). A consistent 
and effective approach to account for such multiscale nature of soil spatial variability is critically 
important and is needed for more accurate regional liquefaction modeling. 

This one-year project aims to improve predictive models for regional liquefaction hazard 
assessment. In particular, the project team develops and validates a hybrid geotechnical and 
geological data-based framework for multiscale regional liquefaction potential mapping (Wang 
and Chen, 2018; Chen et al., 2018; Wang et al., 2018). The framework builds on recent advances 
on multiscale random field models that explicitly account for the spatial variability of soil 
parameters across different length scales (Baker et al., 2011; Chen et al., 2012; Chen et al., 
2016a&b; Liu et al., 2017). Both geotechnical data and surficial geology data-based liquefaction 
potential estimations are integrated into the mapping process through a conditional simulation 
algorithm. Liquefaction potential maps of the Alameda County of California are generated and 
validated against previously published hazard maps and liquefaction observations from the 1989 
Loma Prieta earthquake. To verify and compare the effectiveness of different random field 
model-based mapping methods, a synthetic digital soil field is developed and a benchmark 
liquefaction potential field is used to quantify the performance of different mapping approaches 
(Juang et al., 2018; Wang et al., 2017).  

The remaining of the report will detail (1) the hybrid geotechnical and geological data-based 
framework for multiscale liquefaction mapping, and (2) the synthetical digital field-based model 
validation. Main conclusions and ongoing work are discussed in the summary section. 

 

2 GEOTECHNICAL AND GEOLOGICAL DATA-BASED MULTISCALE 
LIQUEFACTION HAZARD MAPPING 

2.1 Overview of the methodology 
A schematic illustration of the developed framework is shown in Figure 1. In this project, 

liquefaction hazard is quantified and mapped in terms of the liquefaction potential index (LPI) 
(Iwasaki et al., 1978 & 1982). The proposed methodology, however, is general and can be 
applied to map other measures of liquefaction hazard, such as liquefaction-induced ground 
settlement and lateral spread.  

As shown in Figure 1, the liquefaction hazard map is generated by taking into account two 



types of LPI data. The first type, termed the ‘primary data’, is evaluated using a geotechnical-
based LPI model. In this project, the Robertson and Wride (1998) cone penetration test (CPT)-
based liquefaction model is adopted. As shown in Figure 1(a), CPT data are collected within the 
study area upon which the primary LPI are calculated. The second type, termed the ‘secondary 
data’, is obtained based on secondary information such as a surficial geological map (Figure 
1(a)). As shown in Figure 1(b), the distribution of primary LPIs within each geological unit is 
characterized. Then, as shown in Figure 1(c), the secondary LPI data within each geological unit 
are generated based on the characterized distributions of primary LPIs. The role of the secondary 
data is to constrain and improve the primary data-based LPI map such that the final map 
conforms to the large-scale geological boundaries in the analysis region.  

 
Figure 1. Regional mapping of LPI with geological constraints: (a) collect CPT data and calculate primary 
LPI data at CPT soundings; (b) characterize the distribution of LPIs within each geologic unit; (c) 
generate secondary LPI data within each geological unit based on the characterized parameters of 
distribution; (d) random field realization of LPI over the whole region conditioned upon both primary and 
secondary data. 
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Based on the primary CPT-based LPI data and the secondary geology-based LPI data, 
multiscale random field models are developed to generate realizations of LPIs across the region 
of interest, as shown in Figure 1(d). Coupled with Monte Carlo simulations, uncertainties 
associated with the generated liquefaction hazard maps can also be obtained. Various quantities 
of interest related to liquefaction hazard can be obtained and results will be presented and 
discussed in the later part of this report. 

2.2 Project site and data 
The site used to demonstrate the developed framework is the Alameda County site of 

California shown in Figure 2. The availability of engineering data and the extensive past 
liquefaction studies in this region make it an ideal site to test and validate the proposed 
methodology. Information on engineering geology of this site has been compiled by Helley and 
Graymer (1997) and briefly summarized in Holzer et al. (2006). This region is divided into three 
broad northwest-southeast trending regions, parallel to the Hayward Fault – the most important 
seismic source in this area. Bedrock is exposed at the surface of the northeast land. The central 
area, immediately southwest of the bedrock, consists of the Holocene and Pleistocene alluvial 
fan deposits. The area next to the central area – southwest of the original natural shoreline – is 
primarily underlain by the artificial fill that rests on younger San Francisco Bay mud. 

 
Figure 2. Map of the Alameda County site, surficial geology and locations of 210 CPT soundings (black 
dots). The surficial geology map is generated based on information compiled by Holzer et al. (2006). 

A total of 210 CPT sounding profiles are collected from the U.S. Geological Survey (USGS) 
online CPT database (https://earthquake.usgs.gov/research/cpt/). Water table information is 
directly obtained from each CPT sounding record. For CPT soundings without water table 
information, simple interpolation is used. For the unit weight of soil, constant values of γm=15.0 
kN/m3 for moist soil above the water table and γsat=19.4 kN/m3 for saturated soil below the water 
table are assumed. However, when data are available, it would be more accurate to use varying 
unit weights along soil layers. A hypothetical magnitude Mw= 7.1 earthquake is assumed with a 
constant peak horizontal acceleration at the ground surface, amax= 0.5 g. This combination of amax 
and Mw has been assumed in a previous liquefaction mapping study (Holzer et al., 2006) for a 
hypothetical earthquake event on the nearby Hayward Fault. The assumption of a constant amax 
was justified on the basis that the outcrop area of the surficial geological unit generally parallels 
and is close to the Hayward Fault (Holzer et al., 2006). Alternatively, varying peak ground 
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acceleration (PGA) values obtained from the latest USGS seismic hazard map could be adopted 
for the estimation of liquefaction hazard.  

2.3 CPT-based primary LPI data 
In this work, the classical CPT-based liquefaction model by Robertson and Wride (1998) is 

implemented to calculate the liquefaction potential of a soil layer, where two variables –the 
cyclic stress ratio (CSR) and the cyclic resistance ratio (CRR) – are evaluated. Details of this 
classical liquefaction model are included in the Appendix of this report.  

With CSR and CRR defined, the factor of safety (FS) against liquefaction at a particular 
depth z can be calculated as 

 
 
FS = CRR

CSR
  (1) 

To quantify liquefaction hazard at a particular location, the factor of safety is integrated over 
the top 20 m of soil to obtain an averaged index termed the liquefaction potential index (LPI) 
(Iwasaki et al., 1978, 1982). Details of the LPI calculation are included in the Appendix of this 
report. The LPI will be used as the primary variable to be mapped over the project region 
through multiscale random field models. 

For the project site and given a hypothetical earthquake event (Mw = 7.1 and amax = 0.5g), 
the primary LPI values are calculated at 210 CPT locations. The histogram of the calculated 210 
LPI values is plotted in Figure 3(a). To assess the spatial correlations of the primary LPI data, the 
empirical semivariogram γ̂ (h)  is calculated as (Goovaerts, 1997) 

 γ̂ (h) = 1
2N(h)

z(uα ) − z(uα + h)[ ]
α =1

N (h)

∑
2

  (2) 

where N(h) is the number of pairs of data z located a vector h apart (i.e., a lag bin h). In the 
actual computation, a small tolerance (e.g., 10 – 20% of the distance h) is usually added to lag 
bins to accommodate unevenly spaced sample points. Also, it is often convenient to use a scalar 
distance measure h for the calculation of semivariogram (e.g., Wang et al., 2017). Figure 3(b) 
plots the calculated empirical semivariogram based on LPIs at 210 CPT locations. Given the 
sample semivariogram, a weighted least square method (Cressie, 1985) is implemented to fit an 
analytical semivariogram model, shown as the solid line in the plot. In this work, an exponential 
model is fitted, given as 

 γ (h) = 1− e(−h/470)   (3) 

 



 
(a)                                                                           (b) 

Figure 3. Primary LPI data at 210 CPT locations in the Alameda County: (a) histogram in probability 
density function (PDF); (b) semivariograms. 

2.4 Geology-based secondary LPI data 

Knowledge of surficial geology is an important piece of information for regional 
liquefaction mapping as it typically provides broader area coverage and information on large-
scale material heterogeneity. Potentially, any surficial geology-dependent liquefaction 
information (e.g. previous liquefaction observations, regional geology-based liquefaction hazard 
map) could be used to derive secondary LPI data that essentially enforce geological constraint to 
the generated liquefaction hazard map. In this section, a simplified procedure is presented to 
utilize the calculated primary LPI values and the surficial geological map to derive secondary 
LPI data. The method consists of the following steps:  

Step 1. Identify the boundaries of each geological unit within the study region.  
Step 2. Group the primary LPI values by geological units and characterize their statistical 

distributions.  
Step 3. Generate random variable realizations of secondary LPI values within each 

geological unit according to the characterized or assumed statistical distributions. Once 
generated, the secondary data will be kept constant for the following random field realizations.  

Step 4. Assign the generated secondary LPI values to a predefined grid, which will be 
integrated into the conditional sequential simulation algorithm as secondary data.  

For the project site, the surficial geology map of the Alameda County has been shown in 
Figure 2, from which the boundaries of the geologic units are identified. As summarized above, 
the next step is to group primary LPI values by geologic units and characterize their statistical 
distribution. Figure 4 shows the histograms of primary LPIs at 210 CPT soundings grouped by 
the four main geologic units in the study region, i.e., the artificial fill, the Pleistocene fan, the 
Holocene fan and the Merritt sand. It can be seen from Figure 4 that the distributions of LPIs 
within the artificial fill, the Holocene fan and the Merritt sand geological units can be fitted with 
a lognormal distribution, whereas the primary data are too sparse to conclude a basic distribution 
for the Pleistocene fan unit. In the following, a lognormal distribution will be assumed when 
generating secondary LPI data from a distribution within each surficial geologic unit. 
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(a)                                                                           (b) 

 

 
(c)                                                                           (d) 

Figure 4. Histograms of primary LPIs for each geologic unit: (a) artificial fill; (b) Pleistocene fan; (c) 
Holocene fan; (d) Merritt sand.  

In addition to histograms, box plots and cumulative frequency curves are also used to 
understand the primary LPI values grouped by geological unit and are shown in Fig. 5. It can be 
seen from the box plots (Figure 5(a)) that the median LPI values for each geological unit are 
ordered from high to low in this manner: artificial fill, Holocene fan, Merritt sand, Pleistocene 
fan. The cumulative frequency plots (Figure 5(b)) show that, for a given LPI value, the artificial 
fill unit has the highest cumulative frequency values, while the Merritt sand unit has the lowest 
frequency values. The curve for the Pleistocene fan unit shows some abrupt changes due to a 
very limited amount of data points. Previously, such cumulative frequency curves have been 
used to assign a constant probability of liquefaction value to the corresponding geological unit 
(Holzer et al., 2006).  
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Figure 5. LPI data by geologic units: (a) box plots and (b) cumulative frequency of primary LPI data for 
each geologic unit. The number in the bracket is the number of CPT soundings in that geologic unit. 

Basic statistical parameters of the primary LPIs for each geological unit are summarized in 
Table 1. Consistent with the above analysis, artificial fill has the highest mean value of LPI, 
followed by the Holocene fan. The parameters for Pleistocene fan and Merritt sand are very close 
to each other.  

Table 1. Statistics of primary LPIs by surficial geologic units. 

Geologic unit Mean, µ Standard deviation, σ 

Artificial fill 14.58 9.47 

Pleistocene fan 9.48 8.43 

Holocene fan 10.87 8.87 

Merritt sand 8.36 7.65 

 
Once the distribution type and statistical parameters are determined, secondary LPI values 

for each geological unit are obtained from random field realizations and are assigned to a 
predefined grid. The results are shown in Figure 6 for all geological units in the study region. 
Such secondary LPI values will be incorporated into the multiscale random field models 
described in the next section. It is worth noting that the above analysis groups geotechnical data 
based on surficial geological units. Geological units, however, are three-dimensional features. If 
the subsurface information is available, it may be more appropriate to group geotechnical data 
according to three-dimensional features. 
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Figure 6. Generation of secondary LPI data for each surficial geologic unit: (a) articial fill; (b) Pleistocene 
fan; (c) Holocene fan; (d) Merritt sand; (e) bedrock; (f) all 

2.5 Multiscale random field models  
In this section, novel multiscale random field models are presented to integrate both the 

primary and secondary LPI data and to map liquefaction hazards (in LPIs) across the study site. 
Key components of the multiscale random field models are described in this section.  

2.5.1 Conditional sequential simulation algorithm 
A conditional sequential simulation algorithm is implemented in this project to generate 

random field realizations of LPIs across the project site. This algorithm integrates and preserves 
multiple sources of known data (e.g. primary and secondary LPI data). In this algorithm, the 
realization of a random variable Zn is represented by a joint distribution as follows 
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where ∼ N (µ ,Σ)  denotes the vector of random variables following a joint normal distribution 
with the mean vector µ and the covariance matrix Σ; Zn is the random variable to be generated 
with the expected value µn; Zp is the vector of previously generated or known primary random 
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variables with the vector of expected values µp; Zs is a vector of secondary random variables 
with the vector of expected values µs; σn is the standard deviation of Zn; Σ is the covariance 
matrix with subscripts ‘n’, ‘p’ and ‘s’ denoting ‘next’, ‘previous primary’ and ‘secondary’, 
respectively. The individual terms in the covariance matrix is defined as 

 
  
COV[Zi ,Z j ]= ρZi ,Z j

σ Zi
σ Z j

  (5) 

where ρZi ,Z j   is the correlation between two elements Zi and Zj within the random field at any 

scale with a standard deviation of σ Zi
 and σ Z j

, respectively. 

Given the joint distribution in Eq. (4), the distribution of the random variable Zn, conditional 
upon all previously simulated and known primary and secondary data, is given by a univariate 
normal distribution with the updated mean and variance as 

 
   
(Zn | (Z p ,Zs )) ~ N ( !µn , !σ n )   (6) 

with 
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where the symbols in Eq. (7) and (8) have been defined after Eq. (4). The value of a random 
variable Zn at an unsampled location is drawn from the above joint distribution. Once generated, 
Zn becomes a data point in the vector Zp to be conditioned upon by all subsequent simulations. 
This process is repeated by following a random path to each unknown location until all the 
values in the field have been simulated – that is, a map of the primary variable for the region of 
interest is generated. 

 
2.5.2 Characterization of spatial correlations across scales 

In-situ test data such as the CPT data used in this project provide detailed information about 
soil properties at specific locations. Due to the spatial dependence, higher confidence on the 
generated soil properties near sampling locations is expected, which leads to higher confidence 
in the predicted liquefaction susceptibility. In other words, it is plausible, adjacent to a sampling 
location, to generate a higher resolution random field to account for the soil spatial variability at 
smaller scales. In this study, the conventional procedure to characterize soil spatial variability is 
extended to incorporate multiple scales of resolution. The main challenge entails developing a 
consistent representation of fine-scale and coarse-scale random fields while maintaining 
appropriate spatial correlation structures across scales.  



  
(a) Multiscale elements               (b) Multiscale correlations 

Figure 7. Illustration of cross-scale relations and the resulting correlation function ( ρ ). 

In this work, two scales of interest are considered, i.e., Scale c for a coarse scale and Scale f 
for a fine scale, as shown in Figure 7(a). The numbering for coarse elements is in Roman 
numerals, while for fine elements Arabic numbers. The coarse scale is defined as the average of 
all fine-scale points within its area (element) 

 
  
ZI

c = 1
N

Zi
f

i=1,i∈I

N

∑   (9) 

where N = number of fine scale points within a coarse-scale area (element) I. All variables 
described in the previous section are considered to exist at the fine scale. Using such a relation, 
the expression for the variances and spatial correlations of coarse-scale and cross-scale material 
properties can be explicitly derived 
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=

Σ i=1
N Σk=1
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ρZ f ,Zc ( a )
=

Σ i=1
N ρZ f ,Z fi ( a )

Σ i=1
N Σ j=1

N ρZ fi ( a ) ,Z fj ( a )

  (11) 

where ρZc(a ) ,Zc(b)  is the correlation between two coarse scale elements ‘a’ and ‘b’; ρZ f ,Zc(a )  is the 
correlation between a fine scale element and coarse element ‘a’. The derived spatial correlation 
curves across different scales are plotted in Figure 7(b). 
Given the multiscale spatial dependence specified by Eqs. (10) and (11) and an inferred or 
assumed probability distribution of the random variable, the conditional sequential simulation 
approach Eqs (4-8) is employed to generate random field realizations of variables of interest.  

2.5.3 Covariances across data types 
To perform the conditional sequential simulation in Eq. (6), three covariances must be 

determined: one for the primary variable, one for the secondary variable and a cross-covariance 



describing the relationship between these variables. With relatively sufficient amount of primary 
LPI data calculated from CPT soundings, the covariance of the primary variable can be easily 
obtained from the inferred spatial correlation between primary data. However, direct calculation 
of the secondary and cross-covariance can be challenging. In this work, one simplified approach 
is adopted based on the Markov–Bayes hypothesis described by Goovaerts (1997) to derive the 
secondary and cross-covariance by calibrating them to the primary covariance as (Goovaerts, 
1997; Moysey et al., 2003) 

 

   

COVs(h) =
| B | ⋅COVp (h)   for  h = 0

B2 ⋅COVp (h)   for  h > 0

⎧
⎨
⎪

⎩⎪
  (12) 

  COVps (h) = B iCOVp (h)   (13) 

where B is the Markov–Bayes coefficient; COVp is the covariance for the primary variable, 
COVs is the covariance for the secondary variable and COVps is the covariance between the 
primary and the secondary variables; h is the distance vector separating two random variables. 
The Markov–Bayes coefficient B generally varies between 0 and 1 when primary and secondary 
variables are positively correlated. Its value affects the relative importance of primary data and 
secondary data and this effect will be illustrated in the results section.  

In Wang and Chen (2018), a simple procedure to calibrate the coefficient B is presented, 
which is based on a calibration procedure recommended by Deutsch et al. (1998) such that the 
value B is determined as the difference between two conditional expectations as follows 

 B = E1 − E0   (14) 

where the two conditional expectations are defined as 
 E1 = E[P(Zs ≤ Z ) | Zp ≤ z]   (15) 

 E0 = E[P(Zs ≤ z) | Zp > z]   (16) 

where E is the expectation operator; E is the expectation; Zs is the secondary variable (e.g. the 
geological data-based LPI value) and P(Zs≤Z) is the probability of Zs less than or equal to a 
threshold value z (e.g. a given LPI threshold value); Zp is the primary variable (e.g. the 
geotechnical data-based LPI value). The conditional expectation E1 will be close to 1 if the 
primary and secondary data support each other – that is, the two data predict similar liquefaction 
hazard levels. The conditional expectation E0 will be close to 1 if the primary and secondary data 
contradict each other – that is, the two data predictions of liquefaction hazard contradict each 
other.  

The effectiveness of calibration using Eq. (14), however, depends on the availability of 
secondary data. In general, more accurate secondary data would yield better calibration results. If 
there are not enough secondary data, one can choose the B parameter based on the confidence of 
the secondary data. A higher B value means the secondary data has a higher weight on the final 
generated maps.  
 



2.6 Results and discussions 
2.6.1 Monte Carlo analysis 

For regional liquefaction hazard mapping, the multiscale random field models are coupled 
with Monte Carlo simulations to obtain the expected liquefaction hazard across the region and to 
perform probabilistic analysis on quantities of interest. To investigate the influence of the 
Markov–Bayes coefficient B introduced in Eq. (14), six B values are used – namely, 0, 0.1, 0.4, 
0.5, 0.73 and 0.9. For each B value, 1000 Monte Carlo simulations are performed. A hypothetical 
earthquake event (Mw = 7.1, amax = 0.5 g) is assumed for all simulations.  

Figure 8 shows maps of expected LPI values for all six cases of Markov–Bayes coefficient 
B. Each of the six maps is obtained by averaging results from 1000 Monte Carlo simulations. As 
shown in Eqs. (12) and (13), the Markov–Bayes coefficient B is essentially a ‘scaling’ factor 
between the primary covariance and the secondary covariance matrices. The larger the 
coefficient B, the stronger influence the secondary data has on the generated LPI maps. In this 
work, the secondary LPI data come from geological information. Therefore, as the value of B 
increases, the geological boundaries become more distinguishable in the resulting LPI maps, as 
evidenced in Figure 8. When no secondary data are incorporated – that is, B = 0 – no geological 
constraint is applied to the LPI map. Such a case is shown in Figure 8(a) and the resulting LPI 
map might be inaccurate. For instance, lacking geological constraint, the bedrock unit (refer to 
Figure 2 for the geological unit map of the study region) is predicted to have LPI values around 
10, which is usually classified as a high liquefaction severity class (refer to Table 4). This 
contradicts the common knowledge that the bedrock is not prone to liquefaction. By applying 
secondary LPI data, this type of incorrect classification could be mitigated. 
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(d)                                               (e)                                              (f) 

Figure 8. Maps of expected LPI values for all six cases of Markov-Bayes coefficient B. B*=0 is the case 
without secondary LPI data. B*=0.73 is the case where the coefficient B is calibrated. Each map is 
obtained by averaging results from 1000 Monte Carlo simulations: (a) B* = 0; (b) B=0.1; (c) B=0.4; (d) 
B=0.5; (e) B*=0.73; (f) B=0.9 

The case of B = 0.73 is obtained following the calibration procedure described in Eq.(14) 
based on an LPI threshold of 5, which is the value separating the moderate and the high 
liquefaction severity class (refer to Table 4). It should be noted that the selection of LPI 
threshold affects the calibrated B value. For the Alameda County site, the threshold value of 5 is 
chosen as it appropriately separates liquefaction-prone and non-liquefied units. As shown in 
Figure 8(e), the LPI map with the calibrated B = 0.73 manifests reasonable spatial variations of 
LPI that comply with the known data while preserving boundaries of different geological units. It 
should be noted that the calibrated B value can be used as a starting point for further adjustments. 
For instance, if there is a relatively high confidence in the quality of secondary data, or if the 
secondary data are known to have greater impact on liquefaction, the coefficient B could be 
increased. If there is very little knowledge or low confidence about the secondary data, a lower 
value of B could be adopted. 

The results obtained and shown in Figure 8 can be utilized to quantify liquefaction hazard 
and to calculate various quantities of interest. As an example, following the procedure proposed 
by Holzer et al. (2006), cumulative frequency (CF) distributions of LPIs are calculated to assess 
the liquefaction potentials of each geological unit. The CF distributions obtained with different B 
values are plotted in Figure 9. For a given geological unit, Holzer et al. (2006) related the 
percentage area predicted to undergo liquefaction during a given earthquake shaking scenario to 
the value of CF corresponding to LPI = 5.  shows that the artificial fill geological unit has the 
highest CF values for a given LPI and is therefore most likely to liquefy. The Merritt sand unit 
has the lowest CF values for a given LPI and is predicted to be the most resistant to liquefaction. 
The impact of coefficient B on the CF distributions is relatively small. 
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(a)                                               (b)                                              (c) 

 
(d)                                               (e)                                              (f) 

Figure 9. Cumulative frequency distributions of LPI: (a) known data; (b) B = 0.1; (c) B = 0.4; (d) B = 0.5; 
(e) B = 0.73; (f) B = 0.9 

2.6.2 Validation with prior knowledge and observations 
As a modest validation of the framework, maps of the expected liquefaction potential 

hazards are compared with observations of liquefaction following the 1989 Loma Prieta 
earthquake (Kayen et al., 1998). As shown in Figure 10, most of the observed liquefied areas 
(along the coastline and in the artificial fill unit) are also predicted to have high LPI values by the 
proposed framework. As previously mentioned, the LPI map with the calibrated Markov–Bayes 
coefficient B = 0.73 predicts the bedrock unit as non-liquefiable (LPI ≈  0), which is consistent 
with the fact that no liquefaction phenomenon was observed during past earthquakes.  
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(a)                                               (b)                                              (c) 
Figure 10. Comparison of liquefaction observation from the 1989 Loma Prieta earthquake with LPI maps 
generated by the proposed framework: (a) liquefaction observations (modified from Kayen et al., 1998); 
(b) LPI map with B = 0; (c) LPI map with B = 0.73 

 
3 VERIFICATION OF RANDOM FIELD-BASED MAPPING APPROACHES USING 

A SYNTHETIC DIGITAL SOIL FIELD  
3.1 Overview 

While geostatistical tools and random field models are increasingly used in liquefaction 
mapping studies, a systematic assessment and verification of different approaches to account for 
spatial variation and dependence of soil properties or liquefaction potentials are missing and the 
implications of various random field-based mapping approaches are unknown. The main 
challenge is the lack of sufficient data, and therefore lack of knowledge about the soil properties 
and liquefaction potentials of the field. Moreover, in situ test data are typically sampled at 
selected and sometimes clustered locations, resulting in additional complexities to assess random 
field-based model performance. 

To overcome these challenges, in this section, an extremely detailed three-dimensional 
synthetic digital soil field is artificially generated and used as a basis to assess and verify various 
random field-based approaches for liquefaction mapping. Soil properties of interest (e.g., the 
CPT tip resistance) are known at every location in the synthetic field. The benchmark 
liquefaction potential fields can, therefore, be obtained for any given hypothetical earthquake 
event. Moreover, different virtual field test plans are designed to assess their effects on data 
inference and model performances. 

Given such an extensive amount of information, this study will assess and verify various 
common and uncommon random field-based liquefaction mapping approaches. In particular, this 
study will assess: (1) the performance and effectiveness of various approaches in mapping 
quantities of interest (e.g., soil properties, LPIs) over studied region; (2) the effect of amount of 
field data on the relative performances of different approaches, and (3) the optimal random field-
based liquefaction model for mapping liquefaction hazards. This study aims to provide insights 
on approaches that are commonly used to account spatial variability and dependence in random 
field-based liquefaction mapping studies. 

3.2 Three random field-based approaches for liquefaction mapping 
In this section, three random field-based approaches for liquefaction mapping are described 

along with details of the random field model used in the following simulations. Again, the 
classical CPT-based liquefaction model proposed by Robertson and Wride (1998) and 
subsequently updated by Robertson (2009) is used to evaluate liquefaction potential of a soil 
layer. The liquefaction hazard is then quantified and mapped over a region in terms of the 
liquefaction potential index (LPI) (Iwasaki et al., 1978&1982). Details of the CPT-based 
liquefaction model and the LPI calculations are included in the Appendix section. Depending on 
how the spatial dependence and variation are integrated in the mapping process, three common 
and uncommon random field-based approaches will be assessed and verified: the averaged index 
approach, the two-dimensional (2D) local soil property approach and three-dimensional (3D) 



local soil property approach, which are denoted herein as M1, M2 and M3, respectively. A 
schematic detailing these three approaches is shown in Figure 11. 

 
Figure 11. Three random field-based liquefaction mapping approaches. 

As shown in the figure, the averaged index approach (M1) treats the LPI as the spatially 
correlated random variable while the 2D and 3D local soil property approaches (M2 and M3) 
treat the soil properties of interest (e.g., tip resistance from CPT test) as spatially correlated 
random variables. In the 2D local soil property approach, the random field of soil properties is 
generated layer-by-layer considering the horizontal correlation within each layer. In contrast, the 
3D local soil property approach considers both horizontal and vertical spatial correlations. All 
approaches will rely on the random field models and Monte Carlo simulations to generate 
regional liquefaction potential maps. 

3.3 Synthetic digital soil field and benchmark LPI field 

The dimension of the synthetic digital soil field is set as 1000 ×1000 ×20 m (width × 
length × deep) and a soil element size is correspondingly set as 10 ×10 ×0.05 m. There are a 
total of 4,010,000 soil elements in the field. The depth of the digital field (20 m) corresponds to 
the integration depth in LPI calculation detailed in the Appendix section. The soil element is 
assigned to have a thickness of 0.05 m to match the vertical sampling interval of a typical CPT 
test. 

Within this field, a three-dimensional and spatially correlated clean sand equivalent tip 
resistance (qc1N)cs field is generated and its values are assigned to each soil element as shown in 
Figure 12. The parameters used to generate the synthetic field are based on the experience gained 
through the spatial analysis of the CPT database in Alameda County of California (Chen et al., 
2016b). 



 

(a) Three-dimensional view                                     (b) Histogram 

 

(c) Semivariogram in XY plane                     (d) Semivariogram in YZ plane 
Figure 12. The three-dimensional view, the histogram and semivariograms of the synthetic digital 
(qc1N)cs field. The empirical semivariograms (c) and (d) show both the mean values as well as the error 
bars (± standard deviation) from the averaging of all layers. 

The (qc1N)cs of the digital soil field is assumed to follow a lognormal distribution, and the 
spatial correlation of the field is specified as isotropic in the horizontal plane and anisotropic in 
the vertical plane. The histogram of the (qc1N)cs is shown in Figure 12(b),with the mean 𝜇 and 
the variance 	σ 2  as 123.98 kPa and 2182.68 kPa, respectively. The semivariogram 	 γ (h)  in the 
XY plane and YZ plane are respectively shown in Figure 12(c) and Figure 12(d). The error bars 
(± one standard deviation s) represent the variance of empirical semivariogram in the 401 XY 
planes and 100 YZ planes. The magenta line is the fitted g by Eq. (6), and the correlation length 
ax = ay = 82.59 m, az = 0.915 m. For simplicity, the synthetic digital (qc1N)cs field is denoted as 
the “true” (qc1N)cs field for use in subsequent model verifications. It should be noted that the 
true distribution and spatial structure of this digital soil field are unknown to random field-based 
liquefaction modeling and mapping, same as in the case of a real soil field. The lognormal and 
assumptions made on spatial correlation are for the convenience of generating the digital field.  

 



To calculate the benchmark liquefaction potential index (LPI) field, the following input data 
for liquefaction model and for a hypothetical earthquake scenario are used: the moist unit weight 
of the soil γm is taken as a constant at 15 KN/m3, the saturated unit weight γsat is 19 KN/m3, the 
groundwater table GWT is at 3 m below ground surface, the maximum horizontal acceleration at 
the ground surface amax = 0.3g and the moment magnitude Mw = 7.0.  

The resulting benchmark LPI field is shown in Figure 13. The benchmark "true" LPI field 
for the hypothetical earthquake scenario (amax = 0.3g and Mw=7.0). It will be used as the 
benchmark liquefaction potential field for further verification and is denoted as the “true” LPI 
field. According to the severity class of liquefaction listed in Table 4 by Sonmez (2003), most 
areas of the field are classified as “high” (IV) or “very high” (V) under the hypothetical 
earthquake scenario. 

 
Figure 13. The benchmark "true" LPI field for the hypothetical earthquake scenario (amax = 0.3g and 

Mw=7.0) 

3.4 Procedure for model verification 
3.4.1 Virtual site investigation plans 

As suggested by Webster and Oliver (1992), a sample size of 100 should give acceptable 
confidence to estimate semivariograms of soil properties. Two investigation plans are designed 
in this paper to compare the model performances under the scenarios of sufficient and 
insufficient sample size. As shown in Figure 14, plan #1 is designed with a total of 225 evenly -
spaced CPT soundings, where the (qc1N)cs is extracted from the digital soil field at each 
sounding location. As a comparison, plan #2 has only 36 evenly-spaced CPT soundings and is 
used to gauge the random field model performance under insufficient test samples. 



 
Figure 14. Layouts of the virtual site investigation plans (locations A, B, C, D and E are marked for site-
specific comparisons).  

3.4.2 Methods to assess model performance 

The model performances of random field-based liquefaction models are assessed using the 
“true” data from the synthetic digital soil field and the benchmark liquefaction potential field 
(true fields). The models are assessed for two aspects: 1) histogram assessments to check if the 
random field models can simulate the data distribution of the true fields, and 2) semivariogram 
assessments to verify if the random field models can capture the spatial variability of the true 
fields. For (qc1N)cs field, the comparisons of (qc1N)cs profiles at specific locations are made to 
verify the random field-based liquefaction model performances. And for LPI field, the 
cumulative frequency plot and differences between true and simulated fields are assessed to 
evaluate the model performance. 

In addition, three information theory-based measures are adopted to quantitively assess 
model performances, i.e., the mean absolute percentage error (MAPE), the root mean square 
deviation (RMSD) and the bias factor (Armstrong and Collopy, 1992; Prasomphan and Mase, 
2013; Kung et al., 2007; Juang et al., 2012). 
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where n is the number of data; i is the ith data; X is the model output value, e.g., the LPI or 
(qc1N)cs value in this paper; Xtrue is the true LPI or (qc1N)cs value, and Xsim is the simulated or 
predicted value. Smaller MAPE or RMSD value indicates a better model performance. For the 
bias factor, a value of greater than 1 means the model overestimates the true field, a value of less 
than 1 means an underestimation, and a value of 1 means an unbiased prediction. 
3.5 Verification results and discussions 

Following the procedure in the previous section, results of random field-based liquefaction 
models by the averaged index approach, and the 2D and 3D local soil property approaches (M1, 
M2, and M3) are assessed and verified in this section. Unless otherwise stated, results of the 
random field-based liquefaction models are the averaged values based on 1000 Monte Carlo 
simulations. 
3.5.1 Assessment and verification - soil property fields 

The histograms of the true and simulated (qc1N)cs values for both investigation plans are 
plotted in Figure 15. The blue bins represent the true (qc1N)cs histogram, and the red dash lines 
and cyan dash-dot lines represent histogram fitting curves for simulated (qc1N)cs values using 
M2 and M3, respectively. It can be seen from Figure 15(a) that both random field models predict 
the statistical distribution of the true soil property field well, providing that sufficient field data 
(investigation plan #1) are available to infer model parameters. On the other hand, the model 
performance deteriorates for the case with insufficient field data (investigation plan #2), as 
shown in Figure 15(b). The differences between predictions using 2D (M2) and 3D (M3) local 
soil property approaches are almost negligible.  

 
(a) Plan #1 (15 × 15)                                  (b) Plan #2 (6 × 6) 

Figure 15. Histograms of true and simulated (qc1N)cs fields of M2 and M3 for both investigation plans 

The ability of random field models to capture the underlying spatial structure of the soil 
property field is also examined. Empirical semivariograms of the true (qc1N)cs field and the 
simulated (qc1N)cs fields are shown in Figure 16. The red triangles and cyan circles represent the 
mean values of the calculated empirical semivariograms by M2 and M3 in the XY plane and in 



the YZ plane, respectively. The error bars indicate ± one standard deviation from the mean. It 
can be seen from the plots that for investigation plan #1, both models capture the spatial structure 
of the soil property field well. For investigation plan #2, the semivariograms of M2 and M3 
deviate from the trend of the true semivariogram, which is not surprising as insufficient data 
yield a less accurate estimate of model parameters. 

 

 
(a) Plan #1 (15 × 15) in XY plane                 (b) Plan #1 (15 × 15) in YZ plane 

 
(c) Plan #2 (6 × 6) in XY plane               (d) Plan #2 (6 × 6) in YZ plane 

Figure 16. Semivariograms of true (qc1N)cs field and simulated (qc1N)cs fields of M2 and M3 for the both 
investigation plans. 

To quantitatively assess model performances, the three measures introduced in Eqs. (17), 
(18) and (19), i.e., the MAPE, RMSD and the bias factor, are calculated and summarized in XX 
for the simulated (qc1N)cs fields by the local soil property approaches (M2 and M3). Note that in 
the averaged index approach (M1), (qc1N)cs field is not needed and therefore, no result from M1 
is presented in XX. Smaller MAPE and RMSD values mean better performance, and bias factor 
closer to one means more accurate model. MAPE and RMSD values for both local soil property 
approaches (M2 and M3) are relatively small compared with the mean (123.98 kPa) and variance 
(2182.68) of the true field, which indicates a relatively good prediction. M3 performs slightly 
better than M2. For the bias factors, all model results yield slightly greater than one bias factor, 



which means the random field-based models slightly overpredict. The sampling size also affects 
the prediction accuracy, simulations with sufficient field data (plan #1) yield better results. For 
all cases considered, the 3D local soil property approach (M3) outperforms the 2D local soil 
property approach (M2). 

Table 2. The criteria index for the (qc1N)cs random fields 

Index 
Approach 1 (M1) Approach 2 (M2) Approach 3 (M3) 

Plan #1 Plan #2 Plan #1 Plan #2 Plan #1 Plan #2 

MAPE NA NA 0.147 0.238 0.136 0.226 

RMSD NA NA 24.569 36.480 22.887 35.157 
Bias factor NA NA 1.029 1.071 1.024 1.066 

Note: NA means not available 
 

3.5.2 Assessment and verification: liquefaction potential fields 
Figure 17 plots the histograms of the true and simulated LPI fields. All of the random field-

based liquefaction models perform well for investigation plan #1 as the histogram fitting curves 
of M1, M2 and M3 are close to the true LPI histogram. The prediction accuracy decreases with 
the reduction in sample size, as indicated by Figure 17(b).  

 
(a) Plan #1 (15 × 15)                                        (b) Plan #2 (6 × 6) 

Figure 17. Histograms of the true and the simulated LPI fields. 

The semivariograms for simulations with investigation plan #1 and plan #2 are shown in 
Figure 18(a) and (b), respectively. The blue squares, red triangles and cyan circles represent the 
mean values of the calculated empirical semivariograms by M1, M2 and M3, respectively. The 
error bars indicate ±one standard deviation from the mean. It shows that the semivariograms of 
M1, M2 and M3 are very close to the true empirical semivariograms using sufficient samples 
(investigation plan #1). The variability increased when the distance of semivariogram is greater 
than 800 m as evidenced by longer error bars. However, the use of insufficient samples (plan #2) 
yields significant differences between the results of the three models and true empirical 
semivariograms. 



 

(a) Plan #1 (15 × 15)                                        (b) Plan #2 (6 × 6) 

Figure 18. Semivariograms of the true and simulated LPI fields. 

The performances of random field-based liquefaction models throughout the studied site are 
next analyzed with the cumulative frequencies shown in Figure 19. From Figure 19, it can be 
seen that the cumulative frequencies of M1 and M3 are very close to the true ones for both 
investigation plans. The model performance of M2 is worse than M1 and M3, especially under 
the insufficient test samples, as shown in Figure 19(b). With severity class of liquefaction 
defined in Table 1, it is possible to estimate the percentage of the studied site that may 
experience a particular level of liquefaction damage. For instance, from Figure 19(a), 96% of the 
studied site may experience a moderate to high liquefaction (LPI > 5) and 37% may experience a 
very high liquefaction (LPI > 15). 

 
(a) Plan #1 (15 × 15)                                        (b) Plan #2 (6 × 6) 

Figure 19. Cumulative frequency plots of the true and simulated LPI fields 

The contours in Figure 20 are the differences between the simulated LPI values of M1, M2 
and M3 and the true LPI values. The red color represents an overestimation, blue color 
represents an underestimation and green color represents an unbiased prediction. Observations of 
the contours clearly reveal that for investigation plan #1, most of the areas are within the 
unbiased or little bias region, indicating good model performances of the three random field 



models. Over- and underestimations happen mostly around the edges of the field due to a lack of 
sampling data. Again, the reduction of the sample size increases the bias of the prediction, as 
indicated by the contours corresponding to simulations with plan #2 data.  

 
(a) M1, plan #1                                                          (b) M1, plan #2

 
(c) M2, plan #1                                                          (d) M2, plan #2

 
(e) M3, plan #1                                                          (f) M3, plan #2 



Figure 20. Contours of simulated LPI values (LPIsim) minus the true LPI values (LPItrue) for both 
investigation plans 

The model performances of LPI field are also quantitatively assessed with the MAPE, 
RMSD and bias factor. The calculated indices for M1, M2 and M3 are summarized in Table 3. 
All three models predict relatively accurate LPI values over the entire field when the data from 
plan #1 are used. The M3 outperforms M1, and the latter outperforms M2. All three approaches 
slightly overestimate the LPI field as the bias factors are all greater than one. When the number 
of test samples is insufficient (Plan #2), the model performances based on MAPE and bias factor 
are M3 (best), M2 (second), and M1 (worst). By RMSD, however, M2 (3.876) is slightly better 
than M3 (3.897) and better than M1 (3.965). It indicates that the local soil property approach 
(M2 and M3) is superior to the averaged index approach (M1) in predicting the liquefaction 
potential field when the sampling data is insufficient.  

Table 3. The criteria index for LPI random fields 

Index 
Approach 1 (M1) Approach 2 (M2) Approach 3 (M3) 

Plan #1 Plan #2 Plan #1 Plan #2 Plan #1 Plan #2 

MAPE 0.146 0.300 0.150 0.293 0.130 0.285 

RMSD 2.030 3.965 2.047 3.876 1.878 3.897 
Bias factor 1.085 1.151 1.088 1.138 1.070 1.120 

 

The computational efficiency of a model is also of concern when evaluating the model 
performance. The computational time required for obtaining the 1000 LPI random fields based 
on investigation plan #2 are 4.5 mins, 1090.6 mins, and 5237.4 mins for M1, M2, and M3, 
respectively. These numbers are meaningful only on a relative basis, as they depend on the 
computer used in the computation. The averaged index approach (M1) dominates in terms of 
computational efficiency and would be the clear choice when computational cost is of major 
concern.  

In this work, data inference and model verification are carried out based on a synthetic 
digital soil field. The synthetic field affords us extremely detailed information on soil properties 
and a benchmark field for liquefaction potential. The focus of this work is on understanding and 
verifying different random field-based approaches for liquefaction potential mapping, and use of 
the synthetic digital field in this fundamental study has distinctive advantages over any real-
world site investigation data.  

On the other hand, it is important to note the assumptions and limitations of the synthetic 
field and the associated model verification process when drawing conclusions from the analysis. 
For instance, in preparing the synthetic field and in generating random field models, stationarity 
of the random field is assumed. Soil properties are assumed to be isotropic on a horizontal plane 
and anisotropic on a vertical plane. In reality, non-stationary variations of soil properties are 
quite common. In addition, only evenly spaced virtual field investigation plans are considered in 
this study, which simplifies the inference of random field model parameters. In real-world field 
investigations, unevenly spaced and/or clustered sampling locations are common in engineering 
practice. Further study to consider the effect of unevenly spaced and/or clustered sampling plans 



on the data inference and model verification processes and outcomes for random field-based 
liquefaction hazard mapping is warranted. 

 
4 PROJECT DATA 

A data repository has been created on Github that holds data and scripts generated from this 
project. The repository contains data used to generate figures and liquefaction maps presented in 
this report. The repository can be accessed and downloaded using the web URL: 
https://github.com/qschen/multiscale-liquefaction 

 
5 SUMMARY 

In this one-year project, the project team developed a multiscale random field model-based 
methodology to map liquefaction potentials across a region. The method accounts for the spatial 
variability of soil parameters or the estimated liquefaction potential across different length scales. 
Both geotechnical data and surficial geology data-based liquefaction potential estimations are 
integrated in the mapping process through a conditional simulation algorithm. To verify and 
compare the effectiveness of different random field model-based mapping methods, a synthetic 
digital soil field is developed and a benchmark liquefaction potential field is used to quantify the 
performance of different mapping approaches. Main findings of the project are summarized as: 

From the geotechnical and geology-data based mapping study, it is found that 

• The proposed conditional simulation algorithm and the adoption of the Markov-Bayes 
coefficient can effectively account for both geotechnical data and surficial geologic data-
based mapping study. 

• The influence of including surficial geological data is significant. For the study site of 
Alameda County, without geological constraints and with only geotechnical data, the 
generated liquefaction hazard map incorrectly predicts high liquefaction hazard in the 
bedrock geologic unit. 

• As the weight of the geological data increases, the geological boundaries become more 
distinguishable in the generated liquefaction hazard map.  

• With an appropriately calibrated Markov-Bayes coefficient (B=0.73 for the study site), the 
accuracy of the liquefaction potential map is improved when validated against prior 
knowledge and liquefaction observations of the region. 

From the synthetic digital soil field-based verification study, it is found that 

• All three random field models examined can capture closely the statistical distribution and 
spatial structure of the true (qc1N)cs and LPI fields, provided that the amount of field test data 
for model parameter inference is sufficient. The model performances deteriorate with the 
reduction of test samples as expected.  

• All random field models are found to overestimate slightly liquefaction potentials over the 
studied area, compared to the benchmark liquefaction potential fields. 

• When there is a sufficient amount of field data for model parameter inference, the 3D local 
soil property approach (M3) slightly outperforms the averaged index approach (M1) and the 



2D local soil property approach (M2) in terms of the accuracy in predicting the liquefaction 
potentials, while M1 is significantly more efficient than M2 and M3. 

• When there are sufficient field test data to infer model parameters, it is recommended that the 
averaged index approach (M1) be used for liquefaction mapping considering a tradeoff 
between efficiency (in terms of computational effort) and accuracy. On the other hand, under 
the scenario of insufficient data, the 3D local soil property approach (M3) is recommended 
for its highest accuracy among the three models examined.  
It should be noted that the above conclusions on model verification were reached using a 

synthetic digital field with the assumptions of stationarity of the random field and evenly-spaced 
virtual field investigation plans. Thus, these conclusions should be viewed with caution and 
further study to quantify the effect of these assumptions is warranted.  

Ongoing research focuses on the uncertain future earthquake events and is integrating the 
model (e.g., Zhang et al., 2018) to calculate the joint distribution of the peak ground acceleration 
at the surface (amax) and the moment magnitude of the earthquake (Mw).  

 
APPENDIX 

A.1 Robertson & Wride 1998 CPT model 
CSR represents the expected cyclic loading on a soil. It is a function of both the properties 

of the expected earthquake hazard and the properties of the soil, which can be evaluated as 
(Youd et al., 2001) 
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where 𝑎!"# is the peak horizontal acceleration at the ground surface generated by the 
earthquake; 𝑔 is the acceleration of gravity; 𝜎!"  and 𝜎′!"  are total and overburden stresses, 
respectively. 

The variable 𝑟! is the stress reduction coefficient, defined below (z is the depth in meters): 

 
  
rd =

1− 0.4113z0.5 + 0.04052z + 0.001753z1.5

1− 0.4177z0.5 + 0.05729z − 0.006205z1.5 + 0.001210z2   (21) 

MSF refers to the magnitude scaling factor. The MSF value is used to normalize the 
intensity of the chosen design earthquake to a value that can be used with the CSR equation, 
which was developed for Mw =7.5 events. The MSF can be calculated as follows: 

 
  
MSF = 102.24

Mw
2.56   (22) 

Finally, Kσ is a correction factor developed by Seed (1981) to account for the nonlinear 
effect of overburden pressure: 
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Where 𝑃! is the atmospheric pressure, and 𝑓 is an exponent used to reflect site conditions. 
Youd et al. (2001) recommend that the exponent 𝑓 be given a value of 0.7 to 0.8 for relative 
densities between 40 and 60%, and a value of 0.6 to 0.7 for relative densities between 60 and 
80%. 

CRR is used to quantify the liquefaction resistance of a soil. The CPT-based CRR 
calculation used in this methodology was developed by Robertson and Wride (1998), and can be 
approximated with the following equation: 
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Where 𝑞!!! !" is the clean-sand equivalent normalized cone penetration tip resistance. The 
calculation of 𝑞!!! !" recommended in Youd et al. (2001) is used  

   (qc1N )cs = Kc(qc1N )   (25) 

where the conversion factor Kc is calculated from the soil behavior type index Ic as 
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and qc1N is the normalized cone penetration resistance 
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where 𝑃! is the atmospheric pressure; qc is the measured cone penetration resistance; σvo and 
σ′vo are the total and effective vertical overburden stresses, respectively. The stress exponent n is 
estimated as (Robertson 2009): 

 
  
n = 0.381Ic + 0.05

σ vo
'

Pa

⎛

⎝⎜
⎞
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in which Ic is the soil type index defined by Robertson and Wride (1998). 
 

A.2 The liquefaction potential index model by Iwasaki 
Liquefaction Potential Index (LPI) is an index that was developed by Iwasaki et al. (1978, 

1982) to provide a simple evaluation of the properties of the top 20 meters of soil and the 



potential that, given a seismic event, liquefaction induced site effects might occur. The index 
utilizes soil layer and FS information as its inputs, as follows 

 
  
LPI = [ω (z) ⋅FL]

0

20

∫ dz   (29) 

where z is the soil depth in meters, FL  is related to the factor of safety against liquefaction 
(FS) as (Sonmez, 2003)  
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and ω (z)   is a depth weighting factor, defined as follows 

   ω (z) = 10− 0.5z   (31) 

This weighting factor is included to account for the decreasing effect of liquefaction that 
occurs with depth. In other words, even if liquefaction does occur in a deep soil, as the depth of 
the liquefied layer below the ground surface increases, the chance of surface manifestation of 
that liquefaction decreases. Therefore, the value of ω (z)  decreases with increasing depth to a 
value of zero when the depth reaches 20 meters. 

The LPI can be used to classify the severity of liquefaction, where higher values of LPI 
correspond to greater degrees of severity as summarized in Table 4. 

Table 4. Classification of the Liquefaction Potential Index (LPI) (Sonmez, 2003) 

LPI Range Severity class  

LPI = 0 I: Non-liquefiable 

0 < LPI ≤ 2 II: Low 
2 < LPI ≤ 5 III: Moderate 

5 < LPI ≤ 15 IV: High 
LPI > 15 V: Very high 
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